
Subspace Identification with Cylindricity-Based Clustering for
Hierarchical Fuzzy System Construction

Chong, A.1 Gedeon, T.D. 1 Koczy, L. T. 1
'
2 Wong, K. W 1

1 School of Information Technology
Murdoch University, Murdoch,

Western Australia 6150
Email:cchong@ murdoch.edu.au

Abstract: Hierarchical fuzzy systems are proposed to
deal with the rule explosion problem of traditional
fuzzy systems. The inference operations of the fuzzy
systems are well established. The next step is to
tackle the problem of finding sub spaces for automated
hierarchical fuzzy system construction. In this paper,
we propose a clustering technique designed
specifically for this purpose. The technique exploits
the concept of cylindricity and density to find
subspace clusters for fuzzy systems construction. It is
both theoretically and experimentally confirmed that
the algorithm has reasonable accuracy and
scalability.

1. INTRODUCTION

Fuzzy systems suffer from rule explosion. To model
a system with k variables and maximum T fuzzy
terms in each dimension, the number of necessary
rules is which will be very large if k is not very
small. Because of this, fuzzy systems are limited to
handle only very few variables.

Hierarchical fuzzy systems are designed to tackle this
problem [1]. The idea is as follows. Often, the multi-
dimensional input space X = x. X x2 X ... X xk can
be decomposed into some subspaces, e.g. Zo = X1 x
X2 X ••• X Xk0 (ko < k). so that in Zo a partition n =
{D1, D2, Dn} can be determined. In each Di, a sub-
rule base Ri can be constructed with local validity.
The hierarchical rule base structure becomes:

Ro: ifZo is D1 then use R1
if Zo is D2 then use R2

ifzo is Dn. then use Rn.

R1: ifz1 is A 11 then y is B11
ifz1 is A 12 then y is B12

ifz1 is A1m1 then t is B1m1

Rn: if zn is An1 tthen y is Bn1

if zn is An2 then y is Bn1

if zn is Anmn then y is Bnmn
The inference mechanism of the hierarchical fuzzy
system has been established [1]. Hence, emphasis
should now be placed on the construction of such

2 Department ofTelecom & Telematics
Budapest University of Technology and

Economics
Email: koczy@ ttt.bme.hu

hierarchical rule bases. The difficulty is mainly in
finding the subspace Zo and the partition n.

In this paper, we propose a clustering technique that
is designed to find subspace clusters for hierarchical
fuzzy system construction. Given a set of data, a
clustering technique partitions the data into several
groups such that the degree of association is strong
within one group and weak for data in different
groups. In the field of hierarchical fuzzy rule
extraction, some special requirements on the
clustering technique are introduced.

This paper is organized as follows. Section 2.0
discusses the clustering requirements. Section 3.0
presents the general problems of current clustering
techniques. Subspace clusters are explained in
section 4.0. This is followed by the discussion of
CLIQUE [2], one of the earliest clustering techniques
designed to find subspace clusters (section 5.0). A
modified CLIQUE algorithm is presented in section
6.0. Section 7.0 discusses the weaknesses of the
modified CLIQUE algorithm. This is followed by
discussion of cylindricity in section 8.0. Our main
proposed algorithm is presented in section 9.0.
Section 10.0 is devoted to experiments that verify the
effectiveness and efficiency of our proposed
algorithm. This is followed by the conclustion
(section 11).

2. CLUSTERING
REQUIREMENTS

In this section, the requirements for clustering
techniques designed for hierarchical fuzzy system
construction are presented.

1. Capable of handling high dimensional data.
The ultimate goal of hierarchical fuzzy
systems is to break the limitation of fuzzy
systems in the maximum number of
variables that is manageable. If the goal is
achieved, fuzzy systems may be used to
model data with large numbers of
dimensions. Hence, the clustering technique
designed for the construction of hierarchical
fuzzy systems must be able to handle high
dimensional data.

11

Volume 7, No. 1/2 Australian Journal of Intelligent Processing Systems

12

2. Interpretability of the clusters produced.
One of the advantages of fuzzy systems that
distinguish it from neural networks is its
ability to explain its inference results. Once
a conclusion is reached, the user can observe
the rules fired to gain insights into how and
why the conclusion was reached. The
interpretability of a fuzzy system relates
directly to the fuzzy rules used. The
clustering technique used to generate fuzzy
rules should be designed to produce clusters
that form easy-to-interpret fuzzy rules. This
issue is addressed in more detail in section
3.0.

3. No prior knowledge about data required.
Often, clustering techniques require certain
input parameters from users. These
techniques are usable in situations where the
users possess prior information about the
data being studied. One of the important
goals of generic fuzzy systems modeling is
to help users model a problem domain
without requiring any prior knowledge about
the domain. In this case, the clustering
technique should not require prior
knowledge about the data being studied from
the user.

3. PROBLEMS WITH CURRENT
CLUSTERING TECHNIQUES

In this section, the general problems in current
clustering techniques in relation to fuzzy system
construction are examined. A review of the literature
suggests that no single clustering technique is
designed to address all three requirements presented
in section 2.0.

Let us first review the problem of high
dimensionality. There are two valid reasons why
distance function based clustering techniques can fail
to cluster data with large numbers of dimensions. As
the number of dimensions increases, the average
density of points anywhere in the data space
decreases. In this case, many dimensions or
combination of dimensions can have noise or values
that are uniformly distributed. This can cause
distance functions that use all dimensions to fail.
Beside this, it is often not meaningful to cluster data
by examining the full data space, as most of the
current clustering techniques do, since clusters may
be embedded in certain subspaces (see section 4.0 for
details).

The problem of high dimensionality also leads to the
problem of computational feasibility. Some
clustering algorithms are designed to identify clusters
in high dimensional data [2, 3]. Unfortunately, their
algorithms are too computationally complex.

Australian Journal of Intelligent Processing Systems

Although pruning strategies are introduced to reduce
the complexity, the overall complexity of the
techniques grows exponentially as the number of
dimensions in the data increases. Hence, the
scalability of such techniques is low.

Often, the limitation of current clustering techniques
in dealing with high dimensional data is tackled in a
few ways. A straightforward solution is to let the user
specify the subspaces for cluster analysis [2]. This
method is not only error-prone but also fails to
address our third requirement presented in section 2.0.
Another way to address high dimensionality is to
apply a dimension reduction method to the data.
Some examples of popular dimension reduction
methods include principal component analysis (PCA)
and Karhunen-Loeve transformation [4]. The basic
idea of these techniques is to transform the original
data space into a lower dimensional space by forming
dimensions that are linear combinations of the
individual original dimensions. While these methods
are successful in dimension reduction, there are
several disadvantages. Firstly, the dimension
reduction comes with a price - loss of information.
The greater the dimension reduction, the more
information is lost and the less accurate the clusters
become. Secondly, dimension reduction does not
address the problem of finding clusters that exist in
subspaces rather than the full space. Lastly and most
important of all, dimension reduction methods
introduce the problem of low interpretability in the
clusters identified. By forming new dimensions, the
user can no longer interpret the resulting clusters in
relation to the original data space in a straightforward
manner.

Some clustering techniques require prior knowledge
about the data being studied. In the case of objective
optimization algorithms, such as fuzzy c-means [5],
the number of clusters in the data is required as an
input parameter. For the purpose of generic fuzzy
modeling, such an input parameter is unreasonable
since the goal is often to create a fuzzy model based
on the set of data where limited or no prior
knowledge about the data is available.

4. SUBSPACE CLUSTERING

Let

X= X x. Eqn4.1
ie/ i

be the k dimensional data space, where I= {I, 2, ... , k
} is the set of dimension indexes. Then

S =X x. Eqn4.2
ie/o

is a subspace of the full space, where I0 c I. A
subspace cluster is defined as a cluster that is
embedded in a certain subspace. Figure 4.1 shows
two one-dimensional subspace clusters embedded in

Volume 7, No. 1/2

dimensions XI and X2 respectively. Cluster Cl can
be identified by observing its projection on XI. The
data points in cluster Cl are spread uniformly across
X2.

X

................................. .. .
.. J

.. -

1

Cluster C2

Cluster Cl

Figure 4.1: Subspace clusters Cl and C2 embedded
in dimensions XI and X2 respectively.

The existence of subspace clusters in data introduces
new problems for distance function based clustering
algorithms. Consider a set of data with dimensions
1 . . . k. If there exists a subspace cluster embedded in
dimensions 1 .. . k0 where k0 is significantly smaller
than k, then the data points in the cluster are
distributed uniformly in dimensions k0 ••• k. In this
case, it becomes difficult for distance functions that
use all dimensions of the data to reflect the
associations among data points within the cluster.

According to our review of the clustering literature,
CLIQUE is the only clustering technique designed
specifically to find subspace clusters. ENCLUST
extends the idea of CLIQUE to exploit the concept of
entropy. In this study, we modified CLIQUE to
reduce the algorithm's computational complexity and
exploit the concept of cylindricity (see section 8.0) to
reduce the necessary input parameters to the
clustering technique.

5. CLIQUE
In this section, the algorithm of CLIQUE [2] is
discussed. The basic idea of CLIQUE is as follows.
The multi-dimensional data space is first partitioned
into non-overlapping hyperboxes. This is done by
partitioning every dimension into number of equal-
length intervals where is an input parameter. Each
hyperbox is the intersection of one interval from each
dimension. A data point is said to be contained in a
hyperbox if its projections on all dimensions are
within the intervals that comprise the hyperbox. A
hyperbox is dense if the number of points in it

Volume 7, No. 1/2

exceeds a threshold t, which is another user set
parameter. Similarly, a unit is defined to be the
intersection of interval(s) from one or more
dimensions.

Once all the dense units are found, clusters can be
formed by connecting neighboring units. The core of
the clustering technique lies in the algorithm to
identify dense units. The algorithm is based on the
Apriori algorithm [6] used extensively in data mining .
The algorithm proceeds in multiple passes. In the
first pass, all the one-dimensional units are examined
and the dense units become candidates to the next
pass. In general, having determined (k-1)
dimensional dense units, the candidate k-dimensional
units are determined using the candidate generation
procedure given below.

ck = set of candidates at pass k
u.ai = i th dimension of unit u
u.[li,hi) =interval in the i th dimension
Dk-1 =set of all (k-1) dimensional dense units

insert into ck
select u 1 . [1 1 , h 1) , u1.[1 2,h 2), ... , u 1 . [1 k - 1 , h k - 1) , u 2 . [1 k - 1 , h k - 1)
from Dk-1 U1 Dk-1 U2
where u1.a1 = u2.a1, u1.1 1, = U2.l 1, u1.h1 = U 2 . h 1 ,

u1.a2 = U2.a2, u1.12 = U2.12, u1.h2 = U2.h2, ... ,
U 1 . a k - 2 = U2.ak-2, U1.I k-2 = U2-l k-2, u,.h k-2 = u2.h k-2•
u1.ak-1 = U2.ak-1 U1.1k.-1 = U2.lk·1 U1.hk-.1 = U2.h k-1

The relation < represents lexicographic ordering on
dimensions. Upon candidate generation, dense units
that have a projection in (k-1)-dimensions that are not
included in Ck.J are discarded. The resulting
candidates then go through the MDL-based pruning
stage.

Given the subspaces s1, s2, . .. , sn, the MDL-based
technique first groups together the dense units that lie
in the same subspace. Then for each subspace, the
coverage is computed as:

converage (si)= count Eqn 5.1

Where count(ui) is the number of points that is
contained in u;. Subspaces with small coverage are
pruned. The algorithm terminates when no more
candidates are left for a particular pass.

Using a bottom-up approach and discarding non-
dense units in the early passes, the algorithm is able to
prune a significant volume of the error space. The
MOL-based pruning method further discards
candidates that are less likely to be dusters,
increasing the speed of the algorithm. We remark
that the MDL-based pruning method can be error
prone. Figure 5.1 shows situation where MDL-based
pruning can be ineffective. In the figure, the bold
edged units are more likely to be retained than those
real cluster units due to their high coverage.

13

Australian Journal of Intelligent Processing Systems

14

Bold edge units have
high coverage in
MDL-based pruning

Figure 5.1: Converage of units.

Even with the pruning strategies introduced in [2], the
algorithm still suffers from high computational
complexity. This is explained as follows. If a dense
unit exists in k-dimensions, then all of its projections
in a subset of k-dimensions is also dense. The total
number of combinations to be explored by the
algorithm to identify the dense unit is calculated as

where = (k) (k) k'
i i k(k-i)!

Eqn5.2

The overall complexity of the algorithm is thus,
O(ck) for some constant c. Therefore, improvement
on the algorithm to reduce the computational
complexity is necessary. In the next section, we
present our modified algorithm with reduced
complexity.

6. FAST CLIQUE
One of the goals of the proposed clustering technique
is to produce clusters for the construction of
hierarchical fuzzy system. Since fuzzy rules operate
on the projections of the multi-dimensional clusters,
convex clusters are desired for the fuzzy system
generation. Hence, one of the differences between
our algorithm and the original CLIQUE is that our
algorithm is designed to approximate convex clusters.

The basic idea of CLIQUE is retained in our modified
algorithm. The algorithm starts by partitioning every
dimension into (user parameter) number of equal-
length intervals. A unit is considered dense if the
number of data points contained in the unit exceeds
the threshold t (user parameter). The algorithm
consists of the following four steps.

1. Find one of the dense units, u, that exceeds the
threshold t.

2. Approximate convex cluster C, by expanding the
dense unit u in each of the dimensions that the
dense unit is embedded in.

Australian Journal of Intelligent Processing Systems

3. Remove all data points that are contained in the
cluster C as just approximated.

4. Repeat steps 1 - 3 until no dense unit can be
found.

The pseudo-C-code for the important procedures
involved in the algorithm is presented.

PROCEDURE find_dense_unit
Let Ui be the set of one-dimensional units in
dimension i
Let denseunit = []
fori=1tok

for each unit U E Ui
utemp = denseunit x u
if utemp is dense
denseunit = utemp
break

end if
end for

end for

For the convenience of discussion, we define [] as the
zero-dimensional (empty) subspace where [] x X; =
X;. This procedure scans through each of the
dimensions to find one of the dense units in the data.

PROCEDURE approximate_convex_cluster(u)
Let D be the set of dimension indexes of u
for each i in D

Let clusterset = { }
expand_along(u,i)

Let ul = left most element of clusterset along
dimension i
Let ur = right most element of clusterset along

dimension i

u.l = ul.l
u.h = ur.h

end for

Given a dense unit, the procedure
approximate_convex_cluster expands the unit along
all the dimensions that the unit is embedded in. The
procedure results in a hyper-rectangular cluster.

PROCEDURE expand_along(u,i)
global clusterset
add u to clusterset

Let u1 = left neighboring unit of u along dimension i
if u1 is dense

expand_along(u1 ,i)
end if

Let u r = right neighboring unit of u along dimension i
if u r is dense

expand_along(u',i)
end if

Volume 7, No. l/2

(

The procedure expand_along is used by
approximate_convex_cluster to expand a dense unit
along a certain dimension. Using the modified
algorithm, the computational complexity is greatly
reduced. To find a dense unit that exists in k-
dimensions, the procedure find_dense_unit performs
a single pass through each dimension of the data,
giving the complexity O(k). To approximate a
convex cluster using the k-dimensional dense unit, the
procedure approximate_convex_cluster examines
each of the k dimensions O(k) by calling the
procedure expand_along. The procedure
expand_along examines both the right and left
neighboring units. In the worse case, all number of
units are examined The entire algorithm
terminates when all clusters are found. Thus the
overall complexity is:

0(c x (k + ke)) = O(cke) Eqn 6.1

Since the complexity of the algorithm is linear, it is
computationally feasible to cluster data with very
large numbers of dimensions. This is a marked
improvement over the original algorithm.

7. USER PARAMETER
THRESHOLD

In this section, we examine in detail the important
user input parameter to our algorithm - threshold t.
Recall from section 6.0 that we make use of the
threshold to find dense units. The accuracy of our
algorithm relies heavily on the threshold selected. A
high threshold causes the algorithm to undesirably
miss out some dense units while a low threshold
results in misidentifying noise as clusters. For the
convenience of discussion, we define cluster units as
units that contains data points from clusters and noise
units as units that contains noise data points.

An ideal threshold is one that can be used to
distinguish dense units from noise units. Hence,
proper estimation of the threshold requires prior
information such as the percentage of noise or the
number of data points in the least dense cluster about
the data being studied. Despite the fact that the prior
information is often not available to the user, there are
other problems with threshold estimation. The rest of
this section discusses the difficulties of this process.

In the presence of a subspace cluster, it is not possible
to accurately identify the percentage of noise data
points in a set of data. Consider a set of k-
dimensional data containing a subspace cluster
embedded in the dimensions I ,2, ... , k0 where k0 < k.
Then the data points contained in the cluster can be
considered as cluster data points in dimensions I ,2,
... , k0 but become noise data points in dimensions k0_

+1, k0+2, ... , k-l, k. Therefore, threshold estimation

Volume 7, No. 1/2

based on the percentage of noise in a set of data can
be error prone.

It is more accurate to estimate the threshold based on
the number of points contained in the least dense
cluster in the data. Let C be the least dense cluster in
the data and assume that points are uniformly
distributed in clusters, the threshold t can be estimated
as follows.

t = number of points in C I number of units
that can fit into cluster C Eqn 7.1

Expanding the equation, we have:

nip
t = Eqn 7.2

ieD

Where f() can be the ceiling or floor function (more
details later),

n = number of data points in C
p = total number of data
D = set of dimension indexes
si = length of cluster C in the ith dimension
b; = length of units in the ith dimension

Figure 7.1 shows the effects of choosing ceiling or
floor as the function f() in the equation.

Figure 7.1 (a) Coverage of cluster when floor is
chosen as function f() in equation 7.2 (b) Coverage of

cluster when ceiling is chosen as function f() in
equation 7.2

Although eqn 7.2 provides a reasonable estimate of
threshold t when prior information about the least
dense cluster is known, there are situations where no
single threshold exists to separate cluster units and
noise units. Consider figure 7 .2.

Cluster Cl (4 x n points)

Cluster C2 (n points)

Figure 7.2: Subspace clusters with different density

15

Australian Journal of Intelligent Processing Systems

16

In the figure, both clusters are subspace clusters
embedded in dimension X2. The user input is
chosen as 4. Cluster C2 is the least dense cluster.
Using the technique discussed so far, our threshold t
will be selected as n. Each of the two dimensional
unit in cluster C2 has n/4 number of points. Hence,
none of the 2D units is dense. Projecting the points in
C2 onto dimension X2, a one-dimensional dense unit
is obtained. Therefore, the subspace cluster C2
embedded in dimension X2 is successfully identified.

Now consider cluster Cl in the figure. Since it is four
times more dense than cluster C2, the 2D units in Cl
have n points each. So all the 2D units are considered
dense. This results in the algorithm misidentifying
cluster Cl as a two dimensional cluster (the 2D units
will be merged to form a single unit by the algorithm
eventually). In this case, no individual threshold t can
be used by the algorithm to identify the two one-
dimensional subspace clusters.

The example above shows the disadvantage of using a
density threshold for cluster analysis. It is clear that
criteria other than density are needed for successful
cluster analysis. Consider again figure 7 .2, where
although all the two-dimensional units in cluster Cl
exceed the threshold density, the fact that the cluster
points are spread uniformly across dimension XI
suggests that it is not embedded in XI. At this stage,
we wish to bring the concept of 'cylindricity' into our
discussion. In our example, the cluster C 1 is said to
be 'completely cylindrical' along dimension XI. In
the next section, the concept of cylindricity is
discussed in depth.

8. THE CONCEPT OF
CYLINDRICITY

If a cluster c contains points that are spread uniformly
along a certain dimension X;, then the cluster is
indistinguishable from its projection along the
dimension. This is because observing the cluster
projection along the dimension does not provide us
with any information. In this case, we call cluster c
cylindrical along dimension X;.

An example of a subspace cluster was given in
section 2.0. Here we discuss the relation between
cylindricity and subspace clusters. Consider a set of k-
dimensional data containing a subspace cluster
embedded in the dimensions 1,2, ... , k0 where k0 < k,
then the cluster is cylindrical along the dimensions k0_

+1, k0+2, ... , k-1, k.

In more general terms, cylindricity can be defined as
the extent to which data points are uniformly
distributed. In the rest of this section, we discuss a
method to measure cylindricity. A number of
statistical techniques can be used for this purpose. A

Australian Journal of Intelligent Processing Systems

careful examination of the techniques reveals that chi
square test [7] can be easily integrated into our
clustering algorithm.

Consider partitioning a dimension into n intervals of
fixed width. The cylindricity of a set of data points
along the dimension can be computed by examining
their projections to the dimension. If the set of points
is completely cylindrical along the dimension, then
the number of points projected into each of the n
intervals should be the same as shown in figure 8.1a.

1 2 n

p p p

(a)

1 2 n

ql qn

(b)

Figure 8.1 (a) expected number of projected points
(b) realistic number of projected points

Complete cylindricity is rare in practice. Suppose the
observed number of points is as in Figure 8.1 b.
Cylindricity can be measured as the extent to which
the observed numbers (figure 8.1b) differs from the
set of numbers with complete cylindricity (figure
8.1a). The difference can be calculated as:

err= q;- p
i=l qi

Eqn8.1

It is statistically proven that eqn 8.1 resembles a chi
square distribution with the degree of freedom n - 1.
The cylindricity can then be computed as:

)>err) Eqn8.2

Eqn 8.2 models cylindricity as a probability. There
are two advantages to this scheme:
1. The scheme allows for normalized values [0- 1].

2. Since there are well-established statistical
significance thresholds for a variety of
disciplines, it is easy to determine whether the
cylindricity is significant.

9. CYLINDRICITY-BASED
SUBSPACE CLUSTERING

In this section, we proposed a cylindricity-based
subspace-clustering algorithm. The basic idea of our
technique is the following. Cylindricity is used to
determine whether there is any cluster embedded in a
dimension. Using figure 7.2 as an example, the

Volume 7, No. 1/2

l

algorithm starts by computing the cylindricity of
dimension Xl. Because there is no cluster embedded
in the dimension, the resulting cylindricity will be
significantly high. Therefore, the algorithm will
ignore the dimension and move on to examine the
next dimension, X2. Here there are two clusters and
the cylindricity will be significantly low. The
algorithm will then pick the unit with highest density
which, in this case, is the unit contained in cluster Cl.

The complete algorithm is discussed in the rest of this
section. The algorithm starts by partitioning every
dimension into (input parameter) number of equal-
length intervals. The four-step algorithm is presented
following by the pseudo-C-code of the important
procedures used.

1. Find one of the dense units u using procedure
find_dense_unit

2. Approximate convex cluster C, by expanding the
dense unit u in each of the dimensions in which
the dense nit u is embedded.

3. Remove all data points that are contained in
cluster C and disable all units found to be part of
the cluster.

4. Repeat steps 1 - 3 until no dense unit can be
found.

PROCEDURE find_dense_unit

Let Ui be the set of one-dimensional units in
dimension i
Let denseunit = []
fori=ltok

Let cyl = cylindricity of Ui
if cyl is significantly low
Select u E Ui such that denseunit x u is most dense
denseunit = denseunit x u

end if
end for

PROCEDURE expand_along(u,i)

global clusterset
add u to clusterset

Let u' = right neighboring unit of u along dimension i
if is_cluster(u',i)

expand_along(u',i)
end if

Let u1 = left neighboring unit of u along dimension i
if is_cluster(u1,i)

expand_along(u1,i)
end if

Volume 7, No. 1/2

PROCEDURE is_cluster(u,i)

Let cyll = cylindricity of dimension i
Let cyl2 = cylindricity of dimension i disregarding u

if cyl2 is significantly higher than cyl2
return true

else
return false

end if

PROCEDURE approximate_convex_cluster(u)

Let D be the set of dimension indexes of u
for each i in D

Let clusterset = { }
expand_along(u,i)

Let ul = left most element of clusterset along
dimension i
Let ur = right most element of clusterset along

dimension i

u.l = ul.l
u.h=ur.h

end for

The algorithm proposed in this section has two main
extensions to the algorithm in section 6.0. Firstly the
concept of disabling units is introduced in the
cylindricity-based algorithm. In general, any unit that
has been disabled will no longer take part in the
algorithm. Recall from the algorithm that once a
cluster is found, all the data points contained in the
cluster will be removed. This procedure results in all
units contained by the cluster to be empty. These
empty units will have negative impact to our
calculation of cylindricity in the upcoming steps.
Disabling the units can prevent them from affecting
the accuracy of our algorithm.

Secondly, dense units are no longer determined based
on a density threshold. The concept of cylindricity
has been used for two purposes. In the procedure
find_dense_unit, cylindricity is used to determine
whether there is any cluster embedded in a dimension.
In the procedure is_cluster, cylindricity is used to
determine whether a unit is a noise or cluster unit.
The idea is that if the unit is a cluster unit, then
removing it from the dimension should increase the
cylindricity of the dimension significantly.

17

Australian Journal of Intelligent Processing Systems

18

10. EXPERIMENTAL RESULTS

In this section, the performance of the proposed
cylindricity-based clustering technique is evaluated.
Both synthetic generated data and real world data
have been used to verify the effectiveness and
efficiency of the algorithm.

10.1 Synthetic Generated Data

In this section, the overall goal of the experiments is
to evaluate the efficiency and accuracy of the
algorithm. In terms of efficiency, the experiments
aim to determine the scalability of the algorithms in:
1. The dimensionality of the data space
2. The dimensionality of clusters
3. Number of data

The experiments have been structured similarly to [2]
so that comparison between CLIQUE and our
algorithms can be made.

The synthetic data generator from [8] is used to
produce the data for the experiments. Figure 10.1
shows a sample input to the data generator to generate
two dimensional data. In the figure, cluster 2 and 3
are subspace clusters embedded in dimension X2 and
X1 respectively. A total of 3300 data points are
generated in which 10% of the data is noise.

Cluster X1 X2 Number of
Points

1 [0.2, 0.3) [0.2, 0.3) 10000
2 [0.0, 1.0) [0.5, 0 . 6) 10000
3 [0.8, 0.9) [0.0, 1.0) 10000
Noise [0.0, 1.0) [0.0, 1.0) 3000
Figure 10.1 Sample mput to data generator

The clusters generated are hyper-rectangles in shape
and data points are uniformly distributed within the
clusters. The rest of this section discusses the results
of the experiments. Figure 10.2b, 10.3b, and 10.4b
are extracted from [2] to allow for comparisons.

160

140

60

40

20

Number of Dimensions x

Figure 10.2a Scalability with the number of data

Australian Journal of Intelligent Processing Systems

Figure 10.2a shows the scalability of our algorithm as
the number of data increases. The data has five
dimensions. There are three clusters embedded in the
full space. The number of data increases from 3300
to 368000. From the figure, our algorithm scales
linearly with the increase of the number of data. It is
shown in figure 10.2b that CLIQUE performs equally
well.

20000

0
100 Number of data 500

Figure 10.2b CLIQUE scalability with the number of
data

Number of data dimensions 100

Figure 10.3b CLIQUE scalability with the data space
dimensionality

220

200

180

120

100

ao

60

5 10 15 20 25
Number of data dtmension

Figure 10.3a Scalability with the data space
dimensionality

30

Volume 7, No. 1/2

I80

160

140

120

80

60

N u m b e r o f dimensions of clusters 9

Figure 10.4a Scalability with the cluster
dimensionality

12000

0

3 Number of dimensions of clusters 10

10

Figure 10.4b CLIQUE scalability with the cluster
dimensionality

Figure 10.3a shows the scalability of our algorithm as
the number of dimensions of the data increases.
There are three five dimensional subspace clusters.
There are 9150 number of data points. The number of
dimensions of the data space increases from 5 to 30
dimensions. Again, our algorithm scales linearly with
the increase of the data space dimensionality. Figure
10.3b shows a quadratic or worse behavior for
CLIQUE.

Figure 10.4a shows the scalability of our algorithm as
the highest dimensionality of the clusters increases.
The number of dimensions increases from 4 to 10
dimensions. Our algorithm scales linearly with the
increase of cluster dimensionality. The performance
of CLIQUE is quadratic or worse as shown in figure
l0.4b.

In all the above experiments, our algorithm is able to
recover the original clusters in the data. Apart from
that, it is easily observed that the algorithm scales
linearly with the increase of the dimensionality of the
data space, the dimensionality of clusters as well as
the number of data. Overall, the experiments show
that our algorithm outperforms CLIQUE significantly
in every case.

Volume 7, No. 1/2

10.2 Real World Data

In this section, we apply our algorithm to a set of real-
life data. The US 1990 census data (person record),
obtained from http://www.ipums.umn.edu is used .
The 16-dimensional data consists of 10,000 points.
Table 10.1 lists some of the meaningful subspaces
found by our algorithm.

FAMSIZE NCHILD NCHILD5 AGE CHBORN
YRIMMIG SPEAKENG
FAMSIZE NCHILD NCHILD5 CHBORN
YRIMMIG SPEAKENG
FAMSIZE NCHILD NCHILD5 ELDCH
FAMSIZE NCHILD NCHILD5 AGE
FAMSIZE NCHILD NCHILD5 CHBORN
FAMSIZE NCHILD

Table lO.la Subspaces found by the algonthm

FAMSIZE NCHILD NCHILD5
FAMSIZE NCHILD5 YRIMMIG SPEAKENG
FAMSIZE YRIMMIG SPEAKENG INCBUS
YRIMMIG SPEAKENG INCTOT INCBUS
NCHILD5 YRIMMIG SPEAKENG INCTOT
INCBUS
CHBORN YRIMMIG SPEAKENG
UHRSWORK INCBUS
FAMSIZE NCHILD NCHILD5 YRIMMIG
SPEAKENG INCBUS
NCHILD NCHILD5 YRIMMIG SPEAKENG
UHRSWORK INCBUS
NCHILD NCHILD5 YRIMMIG SPEAKENG
INCTOT INCBUS

Table lO.lb Subspaces found by CLIQUE

L d e g e n d

FAMSIZE Number of own family
members in household

NCHILD Number of own children
in household

NCHILD5 Number of own children
under age 5

ELDCH Age of youngest own
child in household

AGE Age
CHBORN Number of children ever

born
YRIMMIG Year of immigr_ation
SPEAKENG Speaks EEnglish
UHRSWORK Usual hours worked per

week
INCTOT Total personal income
IN CB US Non-farm business

income
Table l0.lc Legend

It can be seen that FAMSIZE, NCHILD and
NCHILD5 are predominant in the results. This is
understandable since the number of family members,

19

Australian Journal of Intelligent Processing Systems

20

children and children under the age of 5 should be
highly correlated. YRIMMIG and SPEAKENG a r e
found in the first and second rows of the table. Their
correlation can be explained by the fact that one of
the important criteria for migrating to the US is the
ability to speak English. Detailed examination of the
result reveals that our algorithm is able to discover
meaningful subspaces.

Figure 10.2 shows the subspaces found by CLIQUE.
Similar to our algorithm, it is observed that
FAMSIZE, NCHILD, and NCHILD5 has shown high
correlations in the results. YRIMMIG and
SPEAKENG are also highly correlated. The main
difference in the two sets of results is that there are a
number of subspaces (e.g. UHRSWORK, INCTOT,
INCBUS) which are found in CLIQUE but not in our
algorithm. This can be attributed to the fact t h a t
CLIQUE identifies subspace clusters based on density
regardless of the cylindricity. There may be
subspaces whose density exceeds the threshold but
are actually cylindric. These subspaces will be
ignored by our algorithm. Apart from that, the
number of subspaces identified by CLIQUE is highly
sensitive to the threshold selected.

11. CONCLUSION

In this paper, we have proposed a subspace-clustering
algorithm. The algorithm is designed to find c o n v e x
subspace clusters that can be used for the constructiOn
of hierarchical fuzzy systems. Our algorithm is an
improvement over CLIQUE, one of the first
clustering techniques designed to find subspace
clusters. It was both theoretically and experimentally
confirmed that the complexity of our algorithm is
significantly reduced. Since the computational
complexity of our algorithm is low, it can used to deal
with high dimensional data. The clustering technique
brings us one step nearer to the efficient automatic
construction of hierarchical fuzzy systems.

The concept of cylindricity has been defined and used
in the proposed clustering technique. The use of
cylindricity has not only improved the effectiveness
of the algorithm, but also reduced the number of
necessary user parameters to the technique. The next
steps are to verify the reliability of the algorithm
using a wider range of real life data, and explore the
use of the algorithm to construct hierarchical fuzzy
systems.

Australian Journal of Intelligent Processing Systems

12. REFERENCES

[1] Koczy, L.T. Approximative inference in
hierarchical structured rule bases. in Fift
IFSA World Congress. 1993. Seoul:
International Fuzzy Systems Association.

[2) Agrawal, R., Gehrke, J., Gunopulon, D., and
Raghawan, P. Automatic subspace clustering
of high dimensional data for data mining
applications. in Proceedings of the ACM
SIGMOD conference on Management of
Data. 1998. Canada.

[3] Cheng, C.H., Fu, A.W., and Zhang, Y.
Entropy-based Subspace Clustering for
Mining Numerical Data. in Proceedings of
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining
(KDD-99). 1999. San Diego.

[4] Jackson, J.E., A User's Guide To Principal
Components. 1991, US: John Wiley & Sons.

[5] Bezdek, J.C., Pattern Reconition with Fuzzy
Objective Function Algorithms. 1981, New
York: Plenum Press.

[6] Agrawal, R. and Srikant, R. Fast algorithms
for mining association rules. in Proceedings
of the 20th VLDB Conference. 1994.

[7] Weiss, A.N., Elementary Statistics. 3 ed.
1996: Addison-Wesley.

[8] Zait, M. and Messatfa, H., A Comparative
Study of Clustering Methods. Future
Generation Computer Systems, 1997. 13: p.
149-159.

Volume 7, No.l/2

