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Abstract: Hierarchical fuzzy systems are proposed to 
deal with the rule explosion problem of traditional 
fuzzy systems. The inference operations of the fuzzy 
systems are well established. The next step is to 
tackle the problem of finding sub spaces for automated 
hierarchical fuzzy system construction. In this paper, 
we propose a clustering technique designed 
specifically for this purpose. The technique exploits 
the concept of cylindricity and density to find 
subspace clusters for fuzzy systems construction. It is 
both theoretically and experimentally confirmed that 
the algorithm has reasonable accuracy and 
scalability. 

1. INTRODUCTION 

Fuzzy systems suffer from rule explosion. To model 
a system with k variables and maximum T fuzzy 
terms in each dimension, the number of necessary 
rules is which will be very large if k is not very 
small. Because of this, fuzzy systems are limited to 
handle only very few variables. 

Hierarchical fuzzy systems are designed to tackle this 
problem [1]. The idea is as follows. Often, the multi-
dimensional input space X = x. X x2 X ... X xk can 
be decomposed into some subspaces, e.g. Zo = X1 x 
X2 X ••• X Xk0 (ko < k). so that in Zo a partition n = 
{D1,  D2,  . .... Dn} can be determined. In each Di,   a sub-
rule base Ri can be constructed with local validity. 
The hierarchical rule base structure becomes: 

Ro: ifZo is D1 then use R1 
if Zo is D2 then use R2 

ifzo is Dn. then use Rn. 

R1: ifz1 is A 11  then y is B11 
ifz1 is A 12 then y is B12 

ifz1 is A1m1 then t is B1m1 

Rn: if zn  is An1 tthen y is Bn1 

if zn is An2 then y is Bn1 

if zn is Anmn then y is Bnmn 
The inference mechanism of the hierarchical fuzzy 
system has been established [1]. Hence, emphasis 
should now be placed on the construction of such 
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hierarchical rule bases. The difficulty is mainly in 
finding the subspace Zo and the partition n. 

In this paper, we propose a clustering technique that 
is designed to find subspace clusters for hierarchical 
fuzzy system construction. Given a set of data, a 
clustering technique partitions the data into several 
groups such that the degree of association is strong 
within one group and weak for data in different 
groups. In the field of hierarchical fuzzy rule 
extraction, some special requirements on the 
clustering technique are introduced. 

This paper is organized as follows. Section 2.0 
discusses the clustering requirements. Section 3.0 
presents the general problems of current clustering 
techniques. Subspace clusters are explained in 
section 4.0. This is followed by the discussion of 
CLIQUE [2], one of the earliest clustering techniques 
designed to find subspace clusters (section 5.0). A 
modified CLIQUE algorithm is presented in section 
6.0. Section 7.0 discusses the weaknesses of the 
modified CLIQUE algorithm. This is followed by 
discussion of cylindricity in section 8.0. Our main 
proposed algorithm is presented in section 9.0. 
Section 10.0 is devoted to experiments that verify the 
effectiveness and efficiency of our proposed 
algorithm. This is followed by the conclustion 
(section 11). 

2. CLUSTERING 
REQUIREMENTS 

In this section, the requirements for clustering 
techniques designed for hierarchical fuzzy system 
construction are presented. 

1. Capable of handling high dimensional data. 
The ultimate goal of hierarchical fuzzy 
systems is to break the limitation of fuzzy 
systems in the maximum number of 
variables that is manageable. If the goal is 
achieved, fuzzy systems may be used to 
model data with large numbers of 
dimensions. Hence, the clustering technique 
designed for the construction of hierarchical 
fuzzy systems must be able to handle high 
dimensional data. 
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2. Interpretability of the clusters produced. 
One of the advantages of fuzzy systems that 
distinguish it from neural networks is its 
ability to explain its inference results. Once 
a conclusion is reached, the user can observe 
the rules fired to gain insights into how and 
why the conclusion was reached. The 
interpretability of a fuzzy system relates 
directly to the fuzzy rules used. The 
clustering technique used to generate fuzzy 
rules should be designed to produce clusters 
that form easy-to-interpret fuzzy rules. This 
issue is addressed in more detail in section 
3.0. 

3. No prior knowledge about data required. 
Often, clustering techniques require certain 
input parameters from users. These 
techniques are usable in situations where the 
users possess prior information about the 
data being studied. One of the important 
goals of generic fuzzy systems modeling is 
to help users model a problem domain 
without requiring any prior knowledge about 
the domain. In this case, the clustering 
technique should not require prior 
knowledge about the data being studied from 
the user. 

3. PROBLEMS WITH CURRENT 
CLUSTERING TECHNIQUES 

In this section, the general problems in current 
clustering techniques in relation to fuzzy system 
construction are examined. A review of the literature 
suggests that no single clustering technique is 
designed to address all three requirements presented 
in section 2.0. 

Let us first review the problem of high 
dimensionality. There are two valid reasons why 
distance function based clustering techniques can fail 
to cluster data with large numbers of dimensions. As 
the number of dimensions increases, the average 
density of points anywhere in the data space 
decreases. In this case, many dimensions or 
combination of dimensions can have noise or values 
that are uniformly distributed. This can cause 
distance functions that use all dimensions to fail. 
Beside this, it is often not meaningful to cluster data 
by examining the full data space, as most of the 
current clustering techniques do, since clusters may 
be embedded in certain subspaces (see section 4.0 for 
details). 

The problem of high dimensionality also leads to the 
problem of computational feasibility. Some 
clustering algorithms are designed to identify clusters 
in high dimensional data [2, 3]. Unfortunately, their 
algorithms are too computationally complex. 
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Although pruning strategies are introduced to reduce 
the complexity, the overall complexity of the 
techniques grows exponentially as the number of 
dimensions in the data increases. Hence, the 
scalability of such techniques is low. 

Often, the limitation of current clustering techniques 
in dealing with high dimensional data is tackled in a 
few ways. A straightforward solution is to let the user 
specify the subspaces for cluster analysis [2]. This 
method is not only error-prone but also fails to 
address our third requirement presented in section 2.0. 
Another way to address high dimensionality is to 
apply a dimension reduction method to the data. 
Some examples of popular dimension reduction 
methods include principal component analysis (PCA) 
and Karhunen-Loeve transformation [4]. The basic 
idea of these techniques is to transform the original 
data space into a lower dimensional space by forming 
dimensions that are linear combinations of the 
individual original dimensions. While these methods 
are successful in dimension reduction, there are 
several disadvantages. Firstly, the dimension 
reduction comes with a price - loss of information. 
The greater the dimension reduction, the more 
information is lost and the less accurate the clusters 
become. Secondly, dimension reduction does not 
address the problem of finding clusters that exist in 
subspaces rather than the full space. Lastly and most 
important of all, dimension reduction methods 
introduce the problem of low interpretability in the 
clusters identified. By forming new dimensions, the 
user can no longer interpret the resulting clusters in 
relation to the original data space in a straightforward 
manner. 

Some clustering techniques require prior knowledge 
about the data being studied. In the case of objective 
optimization algorithms, such as fuzzy c-means [5], 
the number of clusters in the data is required as an 
input parameter. For the purpose of generic fuzzy 
modeling, such an input parameter is unreasonable 
since the goal is often to create a fuzzy model based 
on the set of data where limited or no prior 
knowledge about the data is available. 

4. SUBSPACE CLUSTERING 

Let 

X= X x. Eqn4.1 
ie/ i

be the k dimensional data space, where I= {I, 2, ... , k 
} is the set of dimension indexes. Then 

S =X x. Eqn4.2 
ie/o 

is a subspace of the full space, where I0 c I. A 
subspace cluster is defined as a cluster that is 
embedded in a certain subspace. Figure 4.1 shows 
two one-dimensional subspace clusters embedded in 
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dimensions XI and X2 respectively. Cluster Cl can 
be identified by observing its projection on XI. The 
data points in cluster Cl are spread uniformly across 
X2. 

X 

................................. .................................................. . 
.. J 

.. ....... - .................. .. ............................................ .. 

1 

Cluster C2 

Cluster Cl 

Figure 4.1: Subspace clusters Cl and C2 embedded 
in dimensions XI and X2 respectively. 

The existence of subspace clusters in data introduces 
new problems for distance function based clustering 
algorithms. Consider a set of data with dimensions 
1 . . . k. If there exists a subspace cluster embedded in 
dimensions 1 .. . k0 where k0 is significantly smaller 
than k, then the data points in the cluster are 
distributed uniformly in dimensions k0 ••• k. In this 
case, it becomes difficult for distance functions that 
use all dimensions of the data to reflect the 
associations among data points within the cluster. 

According to our review of the clustering literature, 
CLIQUE is the only clustering technique designed 
specifically to find subspace clusters. ENCLUST 
extends the idea of CLIQUE to exploit the concept of 
entropy. In this study, we modified CLIQUE to 
reduce the algorithm's computational complexity and 
exploit the concept of cylindricity (see section 8.0) to 
reduce the necessary input parameters to the 
clustering technique. 

5. CLIQUE 
In this section, the algorithm of CLIQUE [2] is 
discussed. The basic idea of CLIQUE is as follows. 
The multi-dimensional data space is first partitioned 
into non-overlapping hyperboxes. This is done by 
partitioning every dimension into number of equal-
length intervals where is an input parameter. Each 
hyperbox is the intersection of one interval from each 
dimension. A data point is said to be contained in a 
hyperbox if its projections on all dimensions are 
within the intervals that comprise the hyperbox. A 
hyperbox is dense if the number of points in it 
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exceeds a threshold t, which is another user set 
parameter. Similarly, a unit is defined to be the 
intersection of interval(s) from one or more 
dimensions. 

Once all the dense units are found, clusters can be 
formed by connecting neighboring units. The core of 
the clustering technique lies in the algorithm to 
identify dense units. The algorithm is based on the 
Apriori algorithm [6] used extensively in data mining . 
The algorithm proceeds in multiple passes. In the 
first pass, all the one-dimensional units are examined 
and the dense units become candidates to the next 
pass. In general, having determined (k-1) 
dimensional dense units, the candidate k-dimensional 
units are determined using the candidate generation 
procedure given below. 

ck = set of candidates at pass k 
u.ai = i th dimension of unit u 
u.[li,hi) =interval in the i th dimension 
Dk-1 =set of all (k-1) dimensional dense units 

insert into ck 
select u 1 . [ 1 1 , h 1 ) , u1.[1 2,h 2), ... , u 1 . [ 1 k - 1 , h k - 1 ) ,  u 2 . [ 1 k - 1 , h k - 1 )  
from Dk-1 U1 Dk-1 U2 
where u1.a1 = u2.a1, u1.1 1, = U2.l 1, u1.h1 = U 2 . h 1 ,  

u1.a2 = U2.a2, u1.12 = U2.12, u1.h2 = U2.h2, ... , 
U 1 . a k - 2  = U2.ak-2, U1.I k-2 = U2-l k-2, u,.h k-2 = u2.h k-2• 
u1.ak-1 = U2.ak-1 U1.1k.-1 = U2.lk·1 U1.hk-.1 = U2.h k-1 

The relation < represents lexicographic ordering on 
dimensions. Upon candidate generation, dense units 
that have a projection in (k-1)-dimensions that are not 
included in Ck.J are discarded. The resulting 
candidates then go through the MDL-based pruning 
stage. 

Given the subspaces s1, s2, . .. , sn, the MDL-based 
technique first groups together the dense units that lie 
in the same subspace. Then for each subspace, the 
coverage is computed as: 

converage (si)= count Eqn 5.1 

Where count(ui) is the number of points that is 
contained in u;. Subspaces with small coverage are 
pruned. The algorithm terminates when no more 
candidates are left for a particular pass. 

Using a bottom-up approach and discarding non-
dense units in the early passes, the algorithm is able to 
prune a significant volume of the error space. The 
MOL-based pruning method further discards 
candidates that are less likely to be dusters, 
increasing the speed of the algorithm. We remark 
that the MDL-based pruning method can be error 
prone. Figure 5.1 shows situation where MDL-based 
pruning can be ineffective. In the figure, the bold 
edged units are more likely to be retained than those 
real cluster units due to their high coverage. 
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Bold edge units have 
high coverage in 
MDL-based pruning 

Figure 5.1: Converage of units. 

Even with the pruning strategies introduced in [2], the 
algorithm still suffers from high computational 
complexity. This is explained as follows. If a dense 
unit exists in k-dimensions, then all of its projections 
in a subset of k-dimensions is also dense. The total 
number of combinations to be explored by the 
algorithm to identify the dense unit is calculated as 

where = (k) (k) k' 
i i k(k-i)! 

Eqn5.2 

The overall complexity of the algorithm is thus, 
O(ck) for some constant c. Therefore, improvement 
on the algorithm to reduce the computational 
complexity is necessary. In the next section, we 
present our modified algorithm with reduced 
complexity. 

6. FAST CLIQUE 
One of the goals of the proposed clustering technique 
is to produce clusters for the construction of 
hierarchical fuzzy system. Since fuzzy rules operate 
on the projections of the multi-dimensional clusters, 
convex clusters are desired for the fuzzy system 
generation. Hence, one of the differences between 
our algorithm and the original CLIQUE is that our 
algorithm is designed to approximate convex clusters. 

The basic idea of CLIQUE is retained in our modified 
algorithm. The algorithm starts by partitioning every 
dimension into (user parameter) number of equal-
length intervals. A unit is considered dense if the 
number of data points contained in the unit exceeds 
the threshold t (user parameter). The algorithm 
consists of the following four steps. 

1. Find one of the dense units, u, that exceeds the 
threshold t. 

2. Approximate convex cluster C, by expanding the 
dense unit u in each of the dimensions that the 
dense unit is embedded in. 
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3. Remove all data points that are contained in the 
cluster C as just approximated. 

4. Repeat steps 1 - 3 until no dense unit can be 
found. 

The pseudo-C-code for the important procedures 
involved in the algorithm is presented. 

PROCEDURE find_dense_unit 
Let Ui be the set of one-dimensional units in 
dimension i 
Let denseunit = [ ] 
fori=1tok 

for each unit U E Ui 
utemp = denseunit x u 
if utemp is dense 
denseunit = utemp 
break 

end if 
end for 

end for 

For the convenience of discussion, we define [ ] as the 
zero-dimensional (empty) subspace where [] x X; = 
X;. This procedure scans through each of the 
dimensions to find one of the dense units in the data. 

PROCEDURE approximate_convex_cluster(u) 
Let D be the set of dimension indexes of u 
for each i in D 

Let clusterset = { } 
expand_along(u,i) 

Let ul = left most element of clusterset along 
dimension i 
Let ur = right most element of clusterset along 

dimension i 

u.l = ul.l 
u.h = ur.h 

end for 

Given a dense unit, the procedure 
approximate_convex_cluster expands the unit along 
all the dimensions that the unit is embedded in. The 
procedure results in a hyper-rectangular cluster. 

PROCEDURE expand_along(u,i) 
global clusterset 
add u to clusterset 

Let u1 = left neighboring unit of u along dimension i 
if u1 is dense 

expand_along( u1 ,i) 
end if 

Let u r = right neighboring unit of u along dimension i 
if u r is dense 

expand_along(u',i) 
end if 
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The procedure expand_along is used by 
approximate_convex_cluster to expand a dense unit 
along a certain dimension. Using the modified 
algorithm, the computational complexity is greatly 
reduced. To find a dense unit that exists in k-
dimensions, the procedure find_dense_unit performs 
a single pass through each dimension of the data, 
giving the complexity O(k). To approximate a 
convex cluster using the k-dimensional dense unit, the 
procedure approximate_convex_cluster examines 
each of the k dimensions O(k) by calling the 
procedure expand_along. The procedure 
expand_along examines both the right and left 
neighboring units. In the worse case, all number of 
units are examined The entire algorithm 
terminates when all clusters are found. Thus the 
overall complexity is: 

0( c x (k + ke)) = O(cke) Eqn 6.1 

Since the complexity of the algorithm is linear, it is 
computationally feasible to cluster data with very 
large numbers of dimensions. This is a marked 
improvement over the original algorithm. 

7. USER PARAMETER 
THRESHOLD 

In this section, we examine in detail the important 
user input parameter to our algorithm - threshold t. 
Recall from section 6.0 that we make use of the 
threshold to find dense units. The accuracy of our 
algorithm relies heavily on the threshold selected. A 
high threshold causes the algorithm to undesirably 
miss out some dense units while a low threshold 
results in misidentifying noise as clusters. For the 
convenience of discussion, we define cluster units as 
units that contains data points from clusters and noise 
units as units that contains noise data points. 

An ideal threshold is one that can be used to 
distinguish dense units from noise units. Hence, 
proper estimation of the threshold requires prior 
information such as the percentage of noise or the 
number of data points in the least dense cluster about 
the data being studied. Despite the fact that the prior 
information is often not available to the user, there are 
other problems with threshold estimation. The rest of 
this section discusses the difficulties of this process. 

In the presence of a subspace cluster, it is not possible 
to accurately identify the percentage of noise data 
points in a set of data. Consider a set of k-
dimensional data containing a subspace cluster 
embedded in the dimensions I ,2, ... , k0 where k0 < k. 
Then the data points contained in the cluster can be 
considered as cluster data points in dimensions I ,2, 
... , k0 but become noise data points in dimensions k0_ 

+1, k0+2, ... , k-l, k. Therefore, threshold estimation 
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based on the percentage of noise in a set of data can 
be error prone. 

It is more accurate to estimate the threshold based on 
the number of points contained in the least dense 
cluster in the data. Let C be the least dense cluster in 
the data and assume that points are uniformly 
distributed in clusters, the threshold t can be estimated 
as follows. 

t = number of points in C I number of units 
that can fit into cluster C Eqn 7.1 

Expanding the equation, we have: 

nip 
t = Eqn 7.2 

ieD 

Where f() can be the ceiling or floor function (more 
details later), 

n = number of data points in C 
p = total number of data 
D = set of dimension indexes 
si = length of cluster C in the ith dimension 
b; = length of units in the ith dimension 

Figure 7.1 shows the effects of choosing ceiling or 
floor as the function f() in the equation. 

Figure 7.1 (a) Coverage of cluster when floor is 
chosen as function f() in equation 7.2 (b) Coverage of 

cluster when ceiling is chosen as function f() in 
equation 7.2 

Although eqn 7.2 provides a reasonable estimate of 
threshold t when prior information about the least 
dense cluster is known, there are situations where no 
single threshold exists to separate cluster units and 
noise units. Consider figure 7 .2. 

Cluster Cl (4 x n points) 

Cluster C2 (n points) 

Figure 7.2: Subspace clusters with different density 
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In the figure, both clusters are subspace clusters 
embedded in dimension X2. The user input is 
chosen as 4. Cluster C2 is the least dense cluster. 
Using the technique discussed so far, our threshold t 
will be selected as n. Each of the two dimensional 
unit in cluster C2 has n/4 number of points. Hence, 
none of the 2D units is dense. Projecting the points in 
C2 onto dimension X2, a one-dimensional dense unit 
is obtained. Therefore, the subspace cluster C2 
embedded in dimension X2 is successfully identified. 

Now consider cluster Cl in the figure. Since it is four 
times more dense than cluster C2, the 2D units in Cl 
have n points each. So all the 2D units are considered 
dense. This results in the algorithm misidentifying 
cluster Cl as a two dimensional cluster (the 2D units 
will be merged to form a single unit by the algorithm 
eventually). In this case, no individual threshold t can 
be used by the algorithm to identify the two one-
dimensional subspace clusters. 

The example above shows the disadvantage of using a 
density threshold for cluster analysis. It is clear that 
criteria other than density are needed for successful 
cluster analysis. Consider again figure 7 .2, where 
although all the two-dimensional units in cluster Cl 
exceed the threshold density, the fact that the cluster 
points are spread uniformly across dimension XI 
suggests that it is not embedded in XI. At this stage, 
we wish to bring the concept of 'cylindricity' into our 
discussion. In our example, the cluster C 1 is said to 
be 'completely cylindrical' along dimension XI. In 
the next section, the concept of cylindricity is 
discussed in depth. 

8. THE CONCEPT OF 
CYLINDRICITY 

If a cluster c contains points that are spread uniformly 
along a certain dimension X;, then the cluster is 
indistinguishable from its projection along the 
dimension. This is because observing the cluster 
projection along the dimension does not provide us 
with any information. In this case, we call cluster c 
cylindrical along dimension X;. 

An example of a subspace cluster was given in 
section 2.0. Here we discuss the relation between 
cylindricity and subspace clusters. Consider a set of k-
dimensional data containing a subspace cluster 
embedded in the dimensions 1,2, ... , k0 where k0 < k, 
then the cluster is cylindrical along the dimensions k0_ 

+1, k0+2, ... , k-1, k. 

In more general terms, cylindricity can be defined as 
the extent to which data points are uniformly 
distributed. In the rest of this section, we discuss a 
method to measure cylindricity. A number of 
statistical techniques can be used for this purpose. A 
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careful examination of the techniques reveals that chi 
square test [7] can be easily integrated into our 
clustering algorithm. 

Consider partitioning a dimension into n intervals of 
fixed width. The cylindricity of a set of data points 
along the dimension can be computed by examining 
their projections to the dimension. If the set of points 
is completely cylindrical along the dimension, then 
the number of points projected into each of the n 
intervals should be the same as shown in figure 8.1a. 

1 2 n 

p p p 

(a) 

1 2 n 

ql qn 

(b) 

Figure 8.1 (a) expected number of projected points 
(b) realistic number of projected points 

Complete cylindricity is rare in practice. Suppose the 
observed number of points is as in Figure 8.1 b. 
Cylindricity can be measured as the extent to which 
the observed numbers (figure 8.1b) differs from the 
set of numbers with complete cylindricity (figure 
8.1a). The difference can be calculated as: 

err= q;- p 
i=l qi 

Eqn8.1 

It is statistically proven that eqn 8.1 resembles a chi 
square distribution with the degree of freedom n - 1. 
The cylindricity can then be computed as: 

)>err ) Eqn8.2 

Eqn 8.2 models cylindricity as a probability. There 
are two advantages to this scheme: 
1. The scheme allows for normalized values [0- 1]. 

2. Since there are well-established statistical 
significance thresholds for a variety of 
disciplines, it is easy to determine whether the 
cylindricity is significant. 

9. CYLINDRICITY-BASED 
SUBSPACE CLUSTERING 

In this section, we proposed a cylindricity-based 
subspace-clustering algorithm. The basic idea of our 
technique is the following. Cylindricity is used to 
determine whether there is any cluster embedded in a 
dimension. Using figure 7.2 as an example, the 
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algorithm starts by computing the cylindricity of 
dimension Xl. Because there is no cluster embedded 
in the dimension, the resulting cylindricity will be 
significantly high. Therefore, the algorithm will 
ignore the dimension and move on to examine the 
next dimension, X2. Here there are two clusters and 
the cylindricity will be significantly low. The 
algorithm will then pick the unit with highest density 
which, in this case, is the unit contained in cluster Cl. 

The complete algorithm is discussed in the rest of this 
section. The algorithm starts by partitioning every 
dimension into (input parameter) number of equal-
length intervals. The four-step algorithm is presented 
following by the pseudo-C-code of the important 
procedures used. 

1. Find one of the dense units u using procedure 
find_dense_unit 

2. Approximate convex cluster C, by expanding the 
dense unit u in each of the dimensions in which 
the dense nit u is embedded. 

3. Remove all data points that are contained in 
cluster C and disable all units found to be part of 
the cluster. 

4. Repeat steps 1 - 3 until no dense unit can be 
found. 

PROCEDURE find_dense_unit 

Let Ui be the set of one-dimensional units in 
dimension i 
Let denseunit = [ ] 
fori=ltok 

Let cyl = cylindricity of Ui 
if cyl is significantly low 
Select u E Ui such that denseunit x u is most dense 
denseunit = denseunit x u 

end if 
end for 

PROCEDURE expand_along(u,i) 

global clusterset 
add u to clusterset 

Let u' = right neighboring unit of u along dimension i 
if is_cluster(u',i) 

expand_along(u',i) 
end if 

Let u1 = left neighboring unit of u along dimension i 
if is_cluster(u1,i) 

expand_along(u1,i) 
end if 
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PROCEDURE is_cluster(u,i) 

Let cyll = cylindricity of dimension i 
Let cyl2 = cylindricity of dimension i disregarding u 

if cyl2 is significantly higher than cyl2 
return true 

else 
return false 

end if 

PROCEDURE approximate_convex_cluster(u) 

Let D be the set of dimension indexes of u 
for each i in D 

Let clusterset = { } 
expand_along(u,i) 

Let ul = left most element of clusterset along 
dimension i 
Let ur = right most element of clusterset along 

dimension i 

u.l = ul.l 
u.h=ur.h 

end for 

The algorithm proposed in this section has two main 
extensions to the algorithm in section 6.0. Firstly the 
concept of disabling units is introduced in the 
cylindricity-based algorithm. In general, any unit that 
has been disabled will no longer take part in the 
algorithm. Recall from the algorithm that once a 
cluster is found, all the data points contained in the 
cluster will be removed. This procedure results in all 
units contained by the cluster to be empty. These 
empty units will have negative impact to our 
calculation of cylindricity in the upcoming steps. 
Disabling the units can prevent them from affecting 
the accuracy of our algorithm. 

Secondly, dense units are no longer determined based 
on a density threshold. The concept of cylindricity 
has been used for two purposes. In the procedure 
find_dense_unit, cylindricity is used to determine 
whether there is any cluster embedded in a dimension. 
In the procedure is_cluster, cylindricity is used to 
determine whether a unit is a noise or cluster unit. 
The idea is that if the unit is a cluster unit, then 
removing it from the dimension should increase the 
cylindricity of the dimension significantly. 
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10. EXPERIMENTAL RESULTS 

In this section, the performance of the proposed 
cylindricity-based clustering technique is evaluated. 
Both synthetic generated data and real world data 
have been used to verify the effectiveness and 
efficiency of the algorithm. 

10.1 Synthetic Generated Data 

In this section, the overall goal of the experiments is 
to evaluate the efficiency and accuracy of the 
algorithm. In terms of efficiency, the experiments 
aim to determine the scalability of the algorithms in: 
1. The dimensionality of the data space 
2. The dimensionality of clusters 
3. Number of data 

The experiments have been structured similarly to [2] 
so that comparison between CLIQUE and our 
algorithms can be made. 

The synthetic data generator from [8] is used to 
produce the data for the experiments. Figure 10.1 
shows a sample input to the data generator to generate 
two dimensional data. In the figure, cluster 2 and 3 
are subspace clusters embedded in dimension X2 and 
X1 respectively. A total of 3300 data points are 
generated in which 10% of the data is noise. 

Cluster X1 X2 Number of 
Points 

1 [0.2, 0.3) [0.2, 0.3) 10000 
2 [0.0, 1.0) [0.5, 0 . 6 )   10000 
3 [0.8, 0.9) [0.0, 1.0) 10000 
Noise [0.0, 1.0) [0.0, 1.0) 3000 
Figure 10.1 Sample mput to data generator 

The clusters generated are hyper-rectangles in shape 
and data points are uniformly distributed within the 
clusters. The rest of this section discusses the results 
of the experiments. Figure 10.2b, 10.3b, and 10.4b 
are extracted from [2] to allow for comparisons. 
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Figure 10.2a Scalability with the number of data 
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Figure 10.2a shows the scalability of our algorithm as 
the number of data increases. The data has five 
dimensions. There are three clusters embedded in the 
full space. The number of data increases from 3300 
to 368000. From the figure, our algorithm scales 
linearly with the increase of the number of data. It is 
shown in figure 10.2b that CLIQUE performs equally 
well. 

20000 
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Figure 10.2b CLIQUE scalability with the number of 
data 
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Figure 10.3b CLIQUE scalability with the data space 
dimensionality 
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Figure 10.3a Scalability with the data space 
dimensionality 
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Figure 10.4a Scalability with the cluster 
dimensionality 
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Figure 10.4b CLIQUE scalability with the cluster 
dimensionality 

Figure 10.3a shows the scalability of our algorithm as 
the number of dimensions of the data increases. 
There are three five dimensional subspace clusters. 
There are 9150 number of data points. The number of 
dimensions of the data space increases from 5 to 30 
dimensions. Again, our algorithm scales linearly with 
the increase of the data space dimensionality. Figure 
10.3b shows a quadratic or worse behavior for 
CLIQUE. 

Figure 10.4a shows the scalability of our algorithm as 
the highest dimensionality of the clusters increases. 
The number of dimensions increases from 4 to 10 
dimensions. Our algorithm scales linearly with the 
increase of cluster dimensionality. The performance 
of CLIQUE is quadratic or worse as shown in figure 
l0.4b. 

In all the above experiments, our algorithm is able to 
recover the original clusters in the data. Apart from 
that, it is easily observed that the algorithm scales 
linearly with the increase of the dimensionality of the 
data space, the dimensionality of clusters as well as 
the number of data. Overall, the experiments show 
that our algorithm outperforms CLIQUE significantly 
in every case. 
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10.2 Real World Data 

In this section, we apply our algorithm to a set of real-
life data. The US 1990 census data (person record), 
obtained from http://www.ipums.umn.edu is used . 
The 16-dimensional data consists of 10,000 points. 
Table 10.1 lists some of the meaningful subspaces 
found by our algorithm. 

FAMSIZE NCHILD NCHILD5 AGE CHBORN 
YRIMMIG SPEAKENG 
FAMSIZE NCHILD NCHILD5 CHBORN 
YRIMMIG SPEAKENG 
FAMSIZE NCHILD NCHILD5 ELDCH 
FAMSIZE NCHILD NCHILD5 AGE 
FAMSIZE NCHILD NCHILD5 CHBORN 
FAMSIZE NCHILD 

Table lO.la Subspaces found by the algonthm 

FAMSIZE NCHILD NCHILD5 
FAMSIZE NCHILD5 YRIMMIG SPEAKENG 
FAMSIZE YRIMMIG SPEAKENG INCBUS 
YRIMMIG SPEAKENG INCTOT INCBUS 
NCHILD5 YRIMMIG SPEAKENG INCTOT 
INCBUS 
CHBORN YRIMMIG SPEAKENG 
UHRSWORK INCBUS 
FAMSIZE NCHILD NCHILD5 YRIMMIG 
SPEAKENG INCBUS 
NCHILD NCHILD5 YRIMMIG SPEAKENG 
UHRSWORK INCBUS 
NCHILD NCHILD5 YRIMMIG SPEAKENG 
INCTOT INCBUS 

Table lO.lb Subspaces found by CLIQUE 

L d e g e n d  

FAMSIZE Number of own family 
members in household 

NCHILD Number of own children 
in household 

NCHILD5 Number of own children 
under age 5 

ELDCH Age of youngest own 
child in household 

AGE Age 
CHBORN Number of children ever 

born 
YRIMMIG Year of immigr_ation 
SPEAKENG Speaks EEnglish 
UHRSWORK Usual hours worked per 

week 
INCTOT Total personal income 
IN CB US Non-farm business 

income 
Table l0.lc Legend 

It can be seen that FAMSIZE, NCHILD and 
NCHILD5 are predominant in the results. This is 
understandable since the number of family members, 
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children and children under the age of 5 should be 
highly correlated. YRIMMIG and SPEAKENG a r e   
found in the first and second rows of the table. Their 
correlation can be explained by the fact that one of 
the important criteria for migrating to the US is the 
ability to speak English. Detailed examination of the 
result reveals that our algorithm is able to discover 
meaningful subspaces. 

Figure 10.2 shows the subspaces found by CLIQUE. 
Similar to our algorithm, it is observed that 
FAMSIZE, NCHILD, and NCHILD5 has shown high 
correlations in the results. YRIMMIG and 
SPEAKENG are also highly correlated. The main 
difference in the two sets of results is that there are a 
number of subspaces (e.g. UHRSWORK, INCTOT, 
INCBUS) which are found in CLIQUE but not in our 
algorithm. This can be attributed to the fact t h a t  
CLIQUE identifies subspace clusters based on density 
regardless of the cylindricity. There may be 
subspaces whose density exceeds the threshold but 
are actually cylindric. These subspaces will be 
ignored by our algorithm. Apart from that, the 
number of subspaces identified by CLIQUE is highly 
sensitive to the threshold selected. 

11. CONCLUSION 

In this paper, we have proposed a subspace-clustering 
algorithm. The algorithm is designed to find c o n v e x  
subspace clusters that can be used for the constructiOn 
of hierarchical fuzzy systems. Our algorithm is an 
improvement over CLIQUE, one of the first 
clustering techniques designed to find subspace 
clusters. It was both theoretically and experimentally 
confirmed that the complexity of our algorithm is 
significantly reduced. Since the computational 
complexity of our algorithm is low, it can used to deal 
with high dimensional data. The clustering technique 
brings us one step nearer to the efficient automatic 
construction of hierarchical fuzzy systems. 

The concept of cylindricity has been defined and used 
in the proposed clustering technique. The use of 
cylindricity has not only improved the effectiveness 
of the algorithm, but also reduced the number of 
necessary user parameters to the technique. The next 
steps are to verify the reliability of the algorithm 
using a wider range of real life data, and explore the 
use of the algorithm to construct hierarchical fuzzy 
systems. 
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